
1

Query Flocks:
A Generalization of

Association-Rule Mining

CS 33510: Data Mining
Svetlozar Nestorov

CS 33510: Query Flocks 2

Outline

• So far, we studied how to mine association
rules from market-basket data.
– AIS, Apriori, AprioriTID
– Different implementations

• Can we generalize these techniques to arbitrary
relations?

• Query Flocks!
• Market baskets as a query flock.
• Query flock plans.
• Searching for the optimal plan.

CS 33510: Query Flocks 3

Problem Motivation

• Large amounts of data
– stored in relational DBMS (data marts, data

warehouses)

• Need to perform complex data analysis:
ad-hoc, on-line data mining

• Currently, specialized, efficient
algorithms for a small class of problems
– at best, loosely coupled with RDBMS

CS 33510: Query Flocks 4

Query Flocks

• Programming tool that enables efficient,
ad-hoc, on-line data mining

• With conventional RDBMS
– transform complex query into a sequence

of simpler, optimizable queries

• As a part of next-generation optimizers
– new query optimization technique, e. g.,

generalization of the ‘a priori’ technique

CS 33510: Query Flocks 5

Query Flocks Features

• Tightly-coupled integration
– all query processing performed at DBMS
– external query optimization
– full use of DBMS features

• recovery, concurrency control

• Main challenge: performance

CS 33510: Query Flocks 6

Tightly-Coupled Architecture

RDBMS

external
optimizer

Query Flock Plan
in SQL

via JDBC

Query Flock

Result

via JDBC query optimization +
query processing

query optimization only

2

CS 33510: Query Flocks 7

Query Flocks Definition

• Parameterized query with implicit
aggregation and a filter condition
– nonrecursive datalog program with

parameters
answer(B) :- baskets(B,$1)

– arithmetic condition with aggregate
functions

COUNT(answer.B) >= 20
CS 33510: Query Flocks 8

Query Flock Example

• Relation exhibits(Patient, Symptom)

• Query Flock (about $1 and $2):
Query:
answer(P):- exhibits(P,$1) AND

exhibits(P,$2) AND $1<$2

Filter:
COUNT(answer.P) >= c (support)

CS 33510: Query Flocks 9

Query Flocks Explained

• A query flock is about its parameters
• Generate-and-test paradigm:

– pick parameters: cough and fever
– evaluate query part: answer relation
– if filter condition is satisfied add

(cough, fever) to query flock result

• Why the name “flocks”?

CS 33510: Query Flocks 10

Query Flock Result

• Relation over its parameters that meet
the filter condition

$1 $2

cough fever

fever headache

headache insomnia

… …

CS 33510: Query Flocks 11

Market Basket Problem

• Supermarket checkout data
• Find all pairs of items frequently bought

together (in the same basket)
• Success based on

– appropriateness of purpose
– new optimization tricks: ‘a priori’

CS 33510: Query Flocks 12

Market Baskets as a Query
Flock

• Relation baskets(BID,Item)

• Query Flock:
Query:
answer(B) :- baskets(B,$1)

AND baskets(B,$2)

Filter:
COUNT(answer.B) >= c

3

CS 33510: Query Flocks 13

Market Baskets in SQL

• Not optimized effectively in RDBMS
SELECT B1.Item, B2.Item

FROM baskets B1, baskets B2

WHERE B1.Item < B2.Item AND

B1.BID = B2.BID

GROUP BY B1.Item, B2.Item

HAVING c <= COUNT(DISTINCT B1.BID)

CS 33510: Query Flocks 14

The ‘A Priori’ Technique
• A pair of items is frequent only if each

item is frequent
• Reduce the number of potentially

frequent pairs by first finding all
frequent items

INSERT INTO ok
SELECT Item
FROM baskets
GROUP BY Item
HAVING c <= COUNT(DISTINCT BID)

CS 33510: Query Flocks 15

Market Baskets with ‘A Priori’

SELECT B1.item, B2.item
FROM Baskets B1,Baskets B2,

ok T1,ok T2
WHERE B1.item < B2.item
AND B1.item = T1.item
AND B2.item = T2.item
AND B1.BID = B2.BID

GROUP BY B1.item, B2.item
HAVING 20 <= COUNT(DISTICT B1.BID)

CS 33510: Query Flocks 16

‘A Priori’ for Query Flocks

• Create auxiliary relations, as results of
query flocks, that limit the values for
some subsets of the parameters
– safe subqueries of the original query; same

filter

Query: answer(B) :- baskets(B,$1)
AND baskets(B,$2)

Filter: COUNT(answer.B) >= c

CS 33510: Query Flocks 17

Larger Example: Side Effects

• Relations
diagnoses(Patient, Disease)

exhibits(Patient, Symptom)

treatments(Patient, Medicine)

causes(Disease, Symptoms)

• Find possible side effects of medicines

CS 33510: Query Flocks 18

Side-Effect Query Flock

Query:
answer(P) :- diagnoses(P,D)

AND exhibits(P,$s)
AND treatments(P,$m)
AND NOT causes(D,$s)

Filter:
COUNT(answer.P) >= 20

4

CS 33510: Query Flocks 19

Some Safe Subqueries

• answer(P) :- treatments(P,$m)

• answer(P) :- exhibits(P,$s)

• answer(P) :- diagnoses(P,D)
AND exhibits(P,$s)
AND NOT causes(D,$s)

• answer(P) :- exhibits(P,$s)
AND treatments(P,$m)

CS 33510: Query Flocks 20

Side Effects in SQL
select E.Symptom, T.Medicine

from diagnoses D, exhibits E, treatments T

where D.Patient = E.Patient

and D.Patient = T.Patient

and E.Symptom not in

(select C.Symptom

from causes C

where C.Disease = D.Disease)

having count (distinct P) >= 20

group by E.Symptom, T.Medicine

CS 33510: Query Flocks 21

Processing Flocks Efficiently

• Direct translation is too slow.
• Solution: Query Flock Plans

– serve as an external optimizer.
– transform complex flock into an equivalent

sequence of simpler steps.
– each step can be processed efficiently at

the underlying DBMS.
– all data processing done at DBMS.

CS 33510: Query Flocks 22

Query Flock Plan Definition

• A sequence of query flocks
• Each flock defines an auxiliary relation
• Each flock has the same filter
• Each flock is derived from the original by

– adding zero or more auxiliary relations
– choosing safe subquery

• Final step: original query + auxiliary
relations

CS 33510: Query Flocks 23

Query Flock Plan: Limit
parameters

• Step 1: Create auxiliary relation okM
Query: answer(P) :-
treatments(P,$m)

Filter: COUNT(answer.P) >= 20

• Step 2: Create auxiliary relation okS1
Query: answer(P) :- exhibits(P,$s)

Filter: COUNT(answer.P) >= 20

CS 33510: Query Flocks 24

• Step 3: Create auxiliary relation okS2
Query: answer(P):- okS1($s)

AND diagnoses(P,D)

AND exhibits(P,$s)

AND NOT causes(D,$s)

Filter: COUNT(answer.P) >= 20

Query Flock Plan: Limit
parameters

5

CS 33510: Query Flocks 25

Query Flock Plan: Final Step

• Step 4: Final query appears to be
harder but okS2 and okM can reduce
the size of the intermediate results
during the join
Query: answer(P):- diagnoses(P,D)

AND okM($m) AND okS2($s)
AND exhibits(P,$s)
AND treatments(P,$m)
AND NOT causes(D,$s)

Filter: COUNT(answer.P) >= 20
CS 33510: Query Flocks 26

In Reality…

• Current DB optimizers not nearly smart
enough.

• The shapes of the query plans are
limited.

• Solution: do it yourself!
• Break up the queries even further.

CS 33510: Query Flocks 27

Query Flock Plans Improved

• Two types of steps:
– limit parameters (auxiliary relations)
ok_m($m):

answer(P) :- treatments(P,$m)

COUNT(answer.P) >= 20

– reduce base relations
t_1(P,$m) :- treatments(P,$m)

AND ok_m($m)

CS 33510: Query Flocks 28

Auxiliary Relations

treatments(P, $m)

σσσσSup >= 20

ππππ$m

δδδδ$m, count(P) as Supaggregate

select

project

ok_m($m)

aux $m, count(P) >= 20

CS 33510: Query Flocks 29

Generating Flock Plans

• Levelwise, rule-based algorithm
– at each level k, two phases

A: materialize auxiliary relations (sets of k params)
B: reduce base relations

• Heuristics employed
– take advantage of symmetry
– smallest safe subqueries

CS 33510: Query Flocks 30

Example Query Flock Plan

treatments(P,$m) exhibits(P,$s) causes(D,$s) diagnoses(P,D)

aux$m,$s

aux$m aux$s

L0

L2
A

L1
A

Final

B

aux$m,$s

not

6

CS 33510: Query Flocks 31

Direct Plan (in Oracle)

treatments(P,$m)exhibits(P,$s)

not causes(D,$s)

diagnoses(P,D)

aux$m,$s

CS 33510: Query Flocks 32

Why Is It Worthwhile?

• Flock plan appears more complex: 7
queries, final join of 5 relations, but:
– first 6 queries are simple
– final join is faster

• smaller relations (base relation reductions)
• smaller intermediate results (auxiliary relations)

CS 33510: Query Flocks 33

Performance: Medical Data

0
100

200

300
400

500
600

700

100 250 500 1000
Support

Ti
m

e
(s

) Semi-Naive
Flock Plan L1
Flock Plan L2
Direct Plan

CS 33510: Query Flocks 34

Association-Rule Flavors

• Quantitative association rules
• Generalized association rules
• Multi-level association rules
• Qualified association rules
• Generalized qualified association rules

CS 33510: Query Flocks 35

Flocks and Stars

• Most data warehouses are built using
star schemas (dimensional modeling.)

• Qualified association rules take
advantage of all dimensions (not just
products)

• Can be expressed as query flocks!
• Example

CS 33510: Query Flocks 36

Conclusions

• Tightly-coupled integration of data
mining and DBMS is possible
– external query optimization

• Leverages database technology
• Enables ad-hoc, on-line data mining

